Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 610(7930): 212-216, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071160

RESUMO

Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor1-3. Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour4-6. Different coiled-coil adaptors are linked to different cargos7,8, and some share motifs known to contact sites on dynein and dynactin4,9-13. There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.


Assuntos
Microscopia Crioeletrônica , Dineínas do Citoplasma , Complexo Dinactina , Microtúbulos , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/ultraestrutura , Complexo Dinactina/química , Complexo Dinactina/metabolismo , Complexo Dinactina/ultraestrutura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica
2.
Cell ; 169(7): 1303-1314.e18, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602352

RESUMO

Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi-particle. We reveal the 3D structure of the cargo binding dynein tail and show how self-dimerization of the motor domains locks them in a conformation with low microtubule affinity. Disrupting motor dimerization with structure-based mutagenesis drives dynein-1 into an open form with higher affinity for both microtubules and dynactin. We find the open form is also inhibited for movement and that dynactin relieves this by reorienting the motor domains to interact correctly with microtubules. Our model explains how dynactin binding to the dynein-1 tail directly stimulates its motor activity.


Assuntos
Dineínas do Citoplasma/química , Complexos Multiproteicos/química , Animais , Microscopia Crioeletrônica , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/ultraestrutura , Dimerização , Complexo Dinactina/química , Complexo Dinactina/metabolismo , Humanos , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Células Sf9 , Spodoptera , Suínos
3.
Nat Commun ; 6: 8179, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365535

RESUMO

Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA(+) rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.


Assuntos
Trifosfato de Adenosina/metabolismo , Dineínas do Citoplasma/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Microscopia Crioeletrônica , Dineínas do Citoplasma/ultraestrutura , Dictyostelium , Microscopia Eletrônica , Microscopia de Fluorescência , Microtúbulos/ultraestrutura , Modelos Moleculares , Proteínas Motores Moleculares , Suínos , Tubulina (Proteína)/ultraestrutura
4.
Biochem Biophys Res Commun ; 453(4): 686-91, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25301561

RESUMO

Cytoplasmic dynein play an important role in transporting various intracellular cargos by coupling their ATP hydrolysis cycle with their conformational changes. Recent experimental results showed that the cytoplasmic dynein had a highly variable stepping pattern including "hand-over-hand", "inchworm" and "nonalternating-inchworm". Here, we developed a model to describe the coordinated stepping patterns of cytoplasmic dynein, based on its working cycle, construction and the interaction between its leading head and tailing head. The kinetic model showed how change in the distance between the two heads influences the rate of cytoplasmic dynein under different stepping patterns. Numerical simulations of the distribution of step size and striding rate are in good quantitative agreement with experimental observations. Hence, our coordinated stepping model for cytoplasmic dynein successfully explained its diverse stepping patterns as a molecular motor. The cooperative mechanism carried out by the two heads of cytoplasmic dynein shed light on the strategies adopted by the cytoplasmic dynein in executing various functions.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Modelos Químicos , Animais , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Simulação por Computador , Dineínas do Citoplasma/ultraestrutura , Transferência de Energia/fisiologia , Humanos , Hidrólise , Movimento (Física) , Ligação Proteica
5.
Methods Mol Biol ; 736: 285-300, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660734

RESUMO

Atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability will become more versatile to biological sciences if AFM additionally acquires an ability of high-speed imaging, because "direct and real-time visualization" is a straightforward and powerful means to understand biomolecular processes. However, the imaging speed of conventional AFM is too slow to capture moving protein molecules at high resolution. In order to fill this large gap, various efforts have been carried out in the past decade. In this chapter, the past efforts for increasing the scan rate and reduction of tip-sample interaction force of AFM and demonstration of direct visualization of biomolecular processes are described.


Assuntos
Dineínas do Citoplasma/metabolismo , Microscopia de Força Atômica , Microtúbulos/metabolismo , Imagem Molecular/métodos , Silicatos de Alumínio/química , Animais , Encéfalo , Galinhas , Dineínas do Citoplasma/isolamento & purificação , Dineínas do Citoplasma/ultraestrutura , Microtúbulos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...